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ABSTRACT

We propose the multi-layered cepstrum (MLC) method to
estimate multiple fundamental frequencies (MF0) of a sig-
nal under challenging contamination such as high-pass filter
noise. Taking the operation of cepstrum (i.e., Fourier trans-
form, filtering, and nonlinear activation) recursively, MLC is
shown as an efficient method to enhance MF0 saliency in a
step-by-step manner. Evaluation on a real-world polyphonic
music dataset under both normal and low-fidelity conditions
demonstrates the potential of MLC.

Index Terms— Cepstrum, multiple fundamental fre-
quency estimation, time-frequency analysis.

1. INTRODUCTION

Multiple fundamental frequency (MF0) estimation is an es-
sential problem in analyzing various multi-component signals
including multi-talker speech [1,2], polyphonic music [3], fe-
tal electrocardiogram (FECG), photoplethysmographic (PPG)
signals [4], and IoT sensor data [5], to name but a few. Nu-
merous methods have been proposed to enhance the saliency
of F0s in the signal representation, such as the autocorrela-
tion function (ACF) [6], generalized cepstrum [7], nonnega-
tive matrix factorization (NMF), MUltiple SIgnal Classifica-
tion (MUSIC) [8], combined frequency and periodicity (CFP)
[9–11], and deep learning approaches [12]. The generalized
cepstrum, being one of the earliest proposed MF0 estimation
methods [7], still gains attention in recent years, by showing
its effectiveness in suppressing the unwanted harmonics and
in localizing the F0 components by combining it with a spec-
trum [9,10,13]. A recent study further proved that a cepstrum
can perfectly localize the instantaneous F0s of a signal with
the intrinsic mode function (IMF) type [11], a general type of
non-stationary oscillatory signals.

One issue which is relatively less discussed in MF0 es-
timation is the so-called convolutional noise in signals [14].
Convolutional noise is ubiquitous; it occurs when signals are
transmitted through an intermediate channel or device. An
MF0 algorithm usually fails in the presence of convolutional
noise, for example, in the processing of audio signals played
by a smartphone, as the response of a smartphone speaker typ-
ically behaves like a high-pass filter whose cutoff frequency
is around 500 Hz [9, 15]. Such a high-pass filter suppresses

the true F0 peaks, as similar to the case of the “missing funda-
mental” effects in low-pitched musical signals [16]. In such
cases, to identify the true F0 peaks merely from the inter-
leaved harmonics of multiple components is challenging.

In this paper, we generalize the notion of cepstrum to re-
solve the above-mentioned issue in MF0 estimation. The pro-
posed multi-layered cepstrum (MLC) refines the saliency of
the F0s in a recursive manner. In a nutshell, the MLC takes
the operation of cepstrum (i.e., Fourier transform, filtering
and nonlinear activation) repeatedly: for a time-domain input
signal x ∈ RN , l ≥ 0, the lth-layer output of MLC is:

z(0) = σ(0) (|Fx|) , z(l) = σ(l)
(
W(l)Fz(l−1)

)
,

where F ∈ CN×N is the N -point discrete Fourier transform
(DFT) matrix, W ∈ RN×N is a high-pass filter, and σ(·) is
an element-wise power-scaled rectification unit (see Section
3). In the following sections, we will explain how the idea of
MLC is motivated, how it works in MF0 estimation, and its
structural resemblance to multi-layered perceptrons (MLP).
We will then focus on combining two MLCs lying in both
the frequency and time domains to achieve MF0 estimation
by employing the CFP approach. Experiments on both syn-
thetic and real data demonstrates the effectiveness of MLC in
MF0 estimation in both normal and contaminated conditions,
and indicate positively the fact that MLC performs better than
other methods based on a ‘shallow’ DFT.

2. MOTIVATION OF MLC

The cepstrum ẑ := F−1σ(Fx) of x [17, 18] is a classic
method to estimate the F0 of x. A logarithm cepstrum
employing σ(x) := log x is commonly used in single F0
estimation, while the generalized cepstrum (GC) employ-
ing σ(x) := xγ , 0 < γ ≤ 2, is found more applicable in
MF0 estimation, probably because it is numerically more
stable than using the logarithm function and is more robust
to noise [19, 20]. Cepstrum-based MF0 estimation is based
on an assumption that the fast-varying components in a spec-
trum (e.g., harmonic sequences) are relevant to F0s, while
the slow-varying ones (e.g., spectral envelope) are irrelevant
to F0s. Saliency of F0s can be enhanced in the quefrency1

1Since the quefrency has the same unit as time, in this paper, the terms
quefrency and time are used interchangeably.



domain by taking another Fourier transform and a high-pass
filter with a cutoff quefrency at qc on a nonlinearly-stretched
spectrum, where the nonlinear operation is to fit the magni-
tude of the spectrum to humans’ perception scale.

To motivate the MLC, we revise the above-mentioned as-
sumption to that 1) the fast-varying and periodic components
in a spectrum are relevant to F0s while others are not, and that
2) such periodic components still remain periodic (and there-
fore fast-varying) after a Fourier transform, which is a basic
property of DFT. These assumptions allow us to consider re-
peating the operation of cepstrum on x to iteratively discard
the slow-varying or aperiodic components and to purify the
F0-relevant components, which should remain after a num-
ber of filtering processes. This idea has been preliminarily
verified in [21], where the generalized cepstrum of spectrum
(GCoS), being the 2ndlayer output of the MLC, behaves as
a more succinct feature indicating the F0 peaks than a spec-
trum. This paper is an extension of [21] to a multi-layered
time-frequency analysis tool.

Admittedly, the above-mentioned idea is also motivated
by deep learning, which catches wide attention recently in
MF0 estimation [12,22–25]. Not only achieving state-of-the-
art results, deep learning also provides inspiring observation
when solving the MF0 estimation problem. For example,
results in [12] show that the learned networks for melody
tracking resemble traditional pitch detection methods: the
first layer behaves like a spectral analyzer, while the second
layer behaves like a comb filter. It is again intriguing to
consider a multi-layered network for MF0 estimation, where
the well-known pitch detection blocks such as the Fourier
transform and filters are taken directly as subnetworks.

3. THE MLC-CFP METHOD

We formulate the MLC of a non-stationary signal x in the
time-frequency or time-quefrency domain. Given a window
function h ∈ RN and hop size H , the short-time Fourier
transform (STFT) of x, X := X[k, n], is represented as
X := X[k, n] =

∑N−1
m=0 x[m + nH]h[m]e−

j2πkm
N , where

X ∈ CN×M , M is the number of frames, k is the frequency
index, and n is the time index. Denote |X| the element-wise
absolute value of X. The lth-layer short-time MLC is:

Z(0) := σ(0) (|X|) , Z(l) := σ(l)
(
W(l)FZ(l−1)

)
, (1)

where Z(l) ∈ RN×M , Z(l) := Z(l)[k, n] for even l, Z(l) :=
Z(l)[q, n] for odd l, and q is the quefrency index. σ(l) is a
nonlinear, element-wise power function such that for γl > 0,
σ(l) (x) = xγl for x > 0, and σ(l) (x) = 0 for x ≤ 0.
With the N -point DFT matrix F, the frequency resolution of
Z(l)[k, n] is fs/N per bin, and the time resolution of Z(l)[q, n]
is then 1/fs per bin. W(i) ∈ RN×N represents a high-pass
filter; it filters out the elements lying below a cutoff frequency
(quefrency) ic. More precisely, W(l) is a diagonal matrix

such that W(l)[i, i] = 1 when i > ic and i < N − ic, while
W(l)[i, i] = 0 otherwise. For even l, ic := kc defines the
cutoff frequency at fc = kcfs/N , and for odd l, ic := nc
defines the cutoff quefrency at qc = nc/fs. Also note that
since Z(l)[:, n] is even for l > 2, we use F instead of F−1

when transforming from the frequency domain to the time
domain. Many of the basic pitch detection functions are es-
sentially special cases of (1). For example, Z(0) is the STFT
of x, and Z(1) is known as the autocorrelation function (ACF)
for γ0 = 2 and γ1 = 1. (1) also resembles a DNN structure
with zero bias vector: W(l)F resembles the fully-connected
layer and σ(l) resembles the activation function.

To enhance the true F0 components and suppress the high-
order harmonics, consider the last two output layers, Z(le) and
Z(lo), of an MLC, where le is even and lo is odd. Z(le) is in
the frequency domain and Z(lo) is in the quefrency domain.
Based on the CFP approach, we utilize the duality between
them to enhance the saliency of F0 by employing a nonlin-
ear mapping to Z(lo) from the quefrency domain to frequency
domain, and then multiplying it by Z(le) [9–11, 13]:

Y(le,lo)[k, n] = Z(le)[k, n]Z(lo) [bN/ke, n] (2)

where the time-quefrency representation Z(lo)[k, n] is nonlin-
early mapped into the frequency domain, and d·c is the round-
ing function. Since Z(lo) suppresses the harmonic peaks in
Z(le) while Z(le) suppresses the sub-harmonic peaks in Z(lo),
the resulting CFP representation Y(le,lo) := Y(le,lo)[k, n] has
only true F0 peaks enhanced. The nonlinear mapping of Z(lo)

in (2) can be implemented by a filterbank following a custom-
defined indexes of k; see [10, 21] for details. We name the
above process as the MLC-CFP algorithm hereafter.

4. NUMERICAL RESULTS

We illustrate the effectiveness of the MLC-CFP method in
emphasizing F0 peaks of a simulated signal contaminated
with both additive and convolutional noise. Given two com-
ponents, x1 and x2, both are sampled at fs = 1 kHz. x1

is a square wave having 20% duty cycle, and has a constant
F0 at 2 Hz. x2 is a frequency-modulated sawtooth wave
with positive ramp and vertical drop, and has time-varying
F0 represented as f0[n] = 2.5 + cos(2πn/10fs). To simu-
late the effect of convolutional noise, x1 is passed through
a 10th-order Butterworth low-pass filter, and x2 is passed
through a 10th-order Butterworth high-pass filter. Both filters
have a cutoff frequency at 10 Hz. We consider the 2-layer
MLC of two sample signals: the first one is x = x1 + x2,
which is with convolutional noise only, while the second one,
x̃ = x1 + x2 + n + d, is further contaminated with additive
pink noise and impulse noise, where n is additive pink noise
making the SNR of x̃ be 10 dB and d is an impulse at the
80th second.

Fig. 1 shows the STFT (Z(0)), GC (Z(1)), GCoS (Z(2)),
and CFP representation (Y(2,1)) of x and x̂, respectively.



Fig. 1. Simulation result. Upper: x; lower: x̂. From left to right: Z(0) (power-scale spectrogram), Z(1) (GC), Z(2) (GCoS), and
Y(2,1) (CFP representation). The window size is 8 seconds and the hop size is 1 second.

The parameters [γ0, γ1, γ2] = [0.24, 0.6, 1] are used. For
the STFT of both samples, the F0 peaks and the low-order
harmonics of x2 are all unseen, and only the first 5 multiples
of x1 are visible due to low-pass filtering. To capture the
true F0 of x2 from the STFT is very challenging. However,
such information can be found in the GC: although high-
pass filtering noise attenuates the true F0 component in the
spectrum, it does not change the period of the signal. Such
a phenomenon can also be seen in the case with pink noise.
The true F0 trajectory then appears in the GCoS with high
resolution; this is because the nonlinear scaling of the GC
provides the mechanism to down-mixing the frequency when
it is transformed back to the frequency domain. Interest-
ingly, we can see that although the true F0 of x2 is missed,
the resulting F0 trajectory of x2 has resolution even higher
than the one of x1. Since most of the harmonic peaks of x1

are eliminated, its spectrum cannot support better resolution
when transformed to the quefrency domain. Finally, the CFP
representation computed through (2) clearly indicates the true
F0 trajectories of x1 and x2 with less interference.

5. REAL-DATA EXPERIMENTS

We apply the MLC-CFP method for MF0 estimation of poly-
phonic music data, and investigate the effects of 1) the num-
ber of layers, 2) critical parameters γi of each layer, and 3) the
presence of convolutional noise. We used the Bach10 dataset,
containing ten quartets of four different instruments [26] for
the evaluation of multi-pitch estimation (MPE). To see the be-
havior of the algorithm in a straightforward way, we consider
three methods to optimize parameters {γi}Li=0 for an L-layer

MLC-CFP algorithm combining Z(L−1) and Z(L):
1) the brute-force method that searches for the optimal pa-

rameters exhaustively for each γi. The search range of every
γi is from 0.1 to 0.9 with step size of 0.1.

2) the greedy method that searches for the optimal value of
γl based on the optimal values of {γi}l−1

i=0. The search range
is from 0.01 to 0.99 with step size of 0.01, since its light com-
putation allows us to use finer grids. For the post-processing
of the brute-force and the greedy methods, we use the CFP-
based algorithm reported in [21], as a simplified version of [9]
without too detailed hand-crafted rules.

3) the stochastic gradient descent (SGD) method that
minimizes the binary cross-entropy between Y(L) (with 88
log-frequency filterbanks and a sigmoid function as the out-
put layer) and the ground-truth piano roll by performing
SGD over every γi. We apply non-repeated 10-fold cross-
validation on the dataset: for each time one music piece is
chosen as the test data and others as training data. The re-
sulting F-scores are obtained by summing all the counts of
the true positives, false positives, and false negatives. We
initialize γ0 to 0.24, γ1 to 0.6, and all other γis to 1, and use
the SGD optimizer with 0.1 learning rate, a mini-batch size
of 256, and train the network up to 40 epochs.

For other parameters, we compute 7939-point DFT using
Blackman-Harris window, the hop size is 10 ms, the cutoff
frequency fc is 27.5 Hz (frequency of A0), and the cutoff
quefrency qc is 0.24 ms (period of C8). Since there are many
task-dependent parameters, all the source codes will be an-
nounce after this paper is accepted for reproducibility.

Table 1 lists the optimal precision (P), recall (R), F-score
(F), along with γi for every pairs

[
Z(L−1),Z(L)

]
for all opti-



Table 1. Comparison of different layer combinations and testing method on the Bach10 dataset.
Layers Brute Force Greedy SGD (10-fold CV)

{L,L+ 1} γ0 γ1 γ2 γ3 γ4 γ5 P (%) R (%) F (%) γi P (%) R (%) F (%) P (%) R (%) F (%)
0th & 1st 0.3 1 x x x x 77.72 83.51 80.51 0.33 78.05 83.57 80.71 77.67 78.43 78.05
1st & 2nd 0.3 0.5 1 x x x 80.55 87.20 83.74 0.48 81.05 85.23 83.09 79.35 88.10 83.50
2nd & 3rd 0.2 0.6 0.9 1 x x 79.33 89.93 84.30 0.71 80.28 86.66 83.35 82.61 85.99 84.26
3rd & 4th 0.1 0.9 0.9 0.5 1 x 81.06 90.80 85.66 0.65 80.16 87.08 83.47 81.02 85.83 83.36
4th & 5th 0.1 0.9 0.9 0.7 0.8 1 81.14 90.67 85.64 0.78 80.20 87.27 83.58 81.80 86.22 83.95
5th & 6th 0.1 0.9 0.9 0.7 0.8 0.5 82.35 91.10 86.50 0.70 80.29 87.57 83.77 81.97 82.18 82.07

mization approaches. When using the brute-force method, the
resulting P, R and F all increase consistently when the num-
ber of layers increases. Note that the recall increases dramat-
ically with higher-order layer because the weak F0 peaks are
enhanced, similar to the simulation example in Fig. 1. When
using the greedy method, we observe that although the perfor-
mance is sub-optimal, it still increases as L increases. When
using gradient descent, there is no consistent improvement in
F-scores related to the number of layers, possibly because the
hand-crafted rules such as harmonic selection [9] could not
be applied to this model. However, it still gives competitive
performance for L = 3. More specifically, when compared to
other MF0 estimation methods, all the three methods in our
discussion outperform the state-of-the-art matrix factorization
approaches such as constrained NMF and probabilistic latent
component analysis (PLCA) (see Table III in [9] for more de-
tails). The brute-force method also outperform the CFP result
reported in [9], in which the parameters for the hand-crafted
rules are also based on brute-force searching.

Fig. 2 shows the resulting F-scores on the Bach10 dataset
with high-pass degradation, which is simulated by a 4th-order
Butterworth high-pass filters with cutoff frequency from 10 to
1000 Hz. The parameters used here are those found from the
brute force method; see Table 1. Fig. 2 clearly shows that
with more layers the results are better: even under a severe
cutoff frequency at 1 kHz, a 6-layer MLC still gives 72.74%
F-score, 25% higher than the one of a 1-layer MLC. Even
more interestingly, results in some degradation conditions are
better than those in the normal condition. For example, pairs
Z(5) and Z(6) achieve 87.10% F-score with cutoff frequency
at 100 Hz; this is probably because the simulated degradation
suppresses the low-frequency noise incidentally.

To summarize, our experiments show that 1) in the MLC-
CFP algorithm, a deep DFT do performs better than a shallow
DFT, and 2) MLC is highly robust to high-pass noise.

6. DISCUSSION AND CONCLUSION

We have introduced the MLC, explained its physical insight in
signal processing, and verified its potential in detecting multi-
ple F0s through simulation and real-world data under normal
and noisy conditions. We also emphasize that the MLC is not
only useful in the signals contaminated with high-pass convo-
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Fig. 2. F-scores of Bach10 dataset under high-pass noise.

lutional noise, but also useful in all signals which inherently
have weak F0 magnitude. For example, the F0 of bassoon in
the Bach10 dataset is usually weaker than other instruments
(violin, clarinet and saxophone), but experiments show that
this issue is addressed by the MLC. From the result in the
filter test we also suggest that in practice using MLC with a
little high-pass filter can get better result.

One risk of MLC is that it may generate fake F0 peaks.
For example, two F0s at a Hz and b Hz may produces a
cross term at |a − b| Hz due to effect of nonlinear activa-
tion. This cross term cannot be suppressed and may be even
enhanced because it appears in both the time-domain and
frequency-domain representations. To restrict the strength of
cross terms, the results indicate a possible strategy: setting a
small γ0 and larger γis at the higher layers. Our pilot study
also shows that even fake cross terms are produced, they are
mostly weak unless all γis approach zero.

Developing a more efficient way to optimize the param-
eters efficiently on a large-scale dataset with complicated
sources and harmonic structures will be another focus in the
future. From the current finding, we summarize that MLC-
CFP works well in general and is relatively easy to optimize
for L ≤ 3, but a great potential exists in a deeper MLC.
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